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Abstract 

For the first time, a five-parameter distribution, called the kumaraswamy quadratic hazard rate distribution 

is defined and studied. The new distribution contains as special models some well-known distributions 

discussed in lifetime literature, such as the Linear failure rate, Exponential and Rayleigh distributions, 

among several others. We obtain the moments, moment generating and quantile functions. We discuss the 

method of maximum likelihood to estimate the model parameters and determine the observed information 

matrix. A real data sets illustrate the importance and flexibility of the proposed models. 

Keywords:   Quadratic Hazard Rate distribution, Order Statistics, Maximum Likelihood 

Estimation, Reliability Function.  

1.   Introduction 

The quadratic hazard rate distribution ( )QHR  distribution was introduced by Bain 

(1974). This distribution generalizes several well known distributions. Among these 

distributions are the linear fialure (hazard) rate, exponential  and Rayleigh distributions. 

Also, the QHRD  may have an increasing (decreasing) hazard function or a bathtub 

shaped hazard function or an upside-down bathtub shaped hazard function. This property 

enables this distribution to be used in many applications in several areas, such as 

reliability, life testing, survival analysis and others. 

 

A random variable X  is said to have the quadratic hazard rate distribution ( )QHRD  with 

three parameters , ,   and  , if it has the cumulative distribution function  
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where 0, 0    and 2 .    This restriction on the parameter space is made to 

be insure that the hazard function with the following form is positive, see Bain (1974), 
2( , , , ) = , > 0.A x x x x       The corresponding probability density function (pdf) 

is given by 
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Distribution generalization theory has been the focus of prominent investigation over the 

past years (see, e.g., Amoroso 1925; Good 1953; Hoskings and Wallis 1987; McDonald 

1984; Gupta et al. 1998). A particular generalization model is the class of beta 

generalized distributions introduced in Eugene et al. (2002) generated from the logit of 

the beta random variable. Recently, Cordeiro and Castro (2011) introduced a new family 

of generalized distributions (Kw-G), based on the Kumaraswamy distribution 

(Kumaraswamy 1980), to extend the wK   normal distribution is obtained by taking 

( )G x  in (1. 2) to be the normal cumulative function. Analogously, the wK Weibull 

(Cordeiro et al. (2010)), General results for the Kumaraswamy-G  distribution (Nadarajah 

et al. (2012)). wK - generalized gamma (Pascoa et al. (2011)), Kw  Birnbaum-Saunders 

(Saulo et al. (2012)), and wK   Gumbel (Cordeiro et al. (2012)) distributions are obtained 

by taking ( )G x  to be the cdf of the Weibull, generalized gamma, Birnbaum-Saunders and 

Gumbel distributions, respectively, Elbatal (2013) introduced kumaraswamy generalized 

linear failure rate , and the Kumaraswamy Exponentiated Pareto Distribution, among 

several others. Hence, each new Kw G  distribution can be generated from a specified 

G  distribution.  

 

The Kumaraswamy ( )wK  distribution is not very common among statisticians and has 

been little explored in the literature.The cdf and pdf of the Kumaraswamy distribution are 

defined by 

  |( , ) ( ) = 1 1 ,0 < < 1,
b

a

X a bF x x x       (1.3) 

where > 0a  and > 0b  are shape parameters, and the probability density function 
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which can be unimodal, increasing, decreasing or constant, depending on the parameter 

values. It does not seem to be very familiar to statisticians and has not been investigated 

systematically in much detail before, nor has its relative interchangeability with the beta 

distribution been widely appreciated. However, in a very recent paper, Jones (2009) 

explored the background and genesis of this distribution and, more importantly, made 

clear some similarities and differences between the beta and wK  distributions. However, 

the beta distribution has the following advantages over the wK  distribution: simpler 

formulae for moments and moment generating function (mgf), a one-parameter sub-

family of symmetric distributions, simpler moment estimation and more ways of 

generating the distribution by means of physical processes. 

 

In this note, we combine the works of Kumaraswamy (1980) and Cordeiro and Castro 

(2011) to derive some mathematical properties of a new model, called the Kumaraswamy 

quadratic hazard rate ( )KQHR  distribution, which stems from the following general 

construction: if G  denotes the baseline cumulative function of a random variable, then a 

generalized class of distributions can be defined by 

 |( , ) ( ) = 1 1 ( )
b

a

X a bF x G x          (1.5) 
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where > 0a  and > 0b  are two additional shape parameters .The Kw G  distribution can 

be used quite effectively even if the data are censored. Correspondingly, its density 

function is distributions has a very simple form 
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The density family (1.6) has many of the same properties of the class of beta-G  

distributions (see Eugene et al. (2002)), but has some advantages in terms of tractability, 

since it does not involve any special function such as the beta function. A physical 

interpretation of the wK    G  distribution given by (1.5) and (1.6) (for a  and b  positive 

integers) is as follows. Suppose a system is made of b  independent components and that 

each component is made up of a  independent subcomponents. Suppose the system fails 

if any of the b  components fails and that each component fails if all of the a  

subcomponents fail. Let 
1 2, ,...,j j jaX X X denote the life times of the subcomponents with 

in the thj  component, = 1,...,j  b  with common (cdf) G . Let 
jX  denote the lifetime of 

the thj  component, = 1,...,j  b  and let X  denote the lifetime of the entire system. Then 

the (cdf) of X  is given by 
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So, it follows that the wK   G  distribution given by (1.5) and (1.6) is precisely the time 

to failure distribution of the entire system.  

 

The rest of the article is organized as follows. In Section 2, we define the cumulative, 

density and hazard functions of the KQHR  distribution and some special cases. In 

Section 3. includes thr moment , moment generating function . The distribution of the 

order statistics are proposed in Section4. Least squares and weighted least squares 

estimators introduced in Section 5. Finally, maximum likelihood estimation is performed 

in Section 6. 
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2.   Kumaraswamy Quadratic Hazard Rate Distribution 

In this section we studied the kumaraswamy quadratic hazard rate ( )KQHR  distribution 

and the sub-models of this distribution. Now using  (1.1) and (1.2) in (1.5) we have the 

cdf of Kumaraswamy quadratic hazard rate distribution 
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The corresponding probability density function (pdf) of the kumaraswamy quadratic 

hazard rate distribution is given by 
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Graph of (2.2) for various values of a,b,α,β and θ is given in appendix-I 

 

The Linear failure rate (LFR), exponential (E), Rayleigh (R) distributions are clearly the 

most important submodels of Equation (2.2). Other submodels can be immeditely defined 

from Table 1. It is evident that (2.2) is much more flexible than the different distributions  

listed in Table1. The following are special cases of the KQHR  ( , , , , ) :a b    

Table 1:   Some sub-models of the KQHR  distribution 

 

 

2.1  Reliability Analysis 

The Kumaraswamy quadratic hazard rate can be a useful characterization of life time data 

analysis. The reliability function ( )RF  of the Kumaraswamy quadratic hazard rate 

distribution is denoted by ( )KQHRR x  also known as the survivor function and is defined as 
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Distribution α θ β a b 

Quadratic Hazard Rate  - - - 1 1 

kumaraswamy Linear failure rate - - 0 - - 

kumaraswamy Rayleigh 0 - 0 - - 

kumaraswamy Exponential - 0 0 - - 

Linear failure rate - - 0 1 1 

Rayleigh 0 - 0 1 1 

Exponential - 0 0 1 1 
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It is important to note that ( )KQHRR x    ( )KQHRF x  = 1. The hazard rate function (HF) and 

reversed hazarde rate function defined by 
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Graph of (2.4) for various values of a,b,α,β and θ is given in appendix-II 
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respectively. It is important to note that the units for ( )KQHRh x  is the probability of failure 

per unit of time, distance or cycles. These failure rates are defined with different choices 

of parameters. The cumulative hazard function of the Kumaraswamy quadratic hazard 

rate distribution is denoted by ( )KQHRH x  and is defined as 
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It is important to note that the units for ( )KQHRH x  is the cumulative probability of failure 

per unit of time, distance or cycles. we can show that . For all choice of parameters the 

distribution has the decreasing patterns of cumulative instantaneous failure rates. 
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3.   Statistical Properties 

In this section we study the statistical properties of the kumaraswamy quadratic hazard 

rate distribution. Specifically quantile, moments and moment generating function .

Moments are necessary and important in any statistical analysis, especially in 

applications. It can be used to study the most important features and characteristics of a 

distribution (e.g., tendency, dispersion, skewness and kurtosis). 

Quantile and Random Number Generation 

The quantile 
qx  of the KQHR  ( , , , , )a b    is real solution of the following equation 
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The random number generation as x  of the KQHR  ( , , , , )a b    is defined by the 

following relation 
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Moments 

The following theorems give the thr  moment ( )r  and moment generating function 

( )XM t  of the KQHR  ( ; , , , , ).x a b     

Theorem (3.1) 
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since 
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substituting from (3.7) into (3.6) we have 
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where 
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          
   
   
   

 
  

Which completes the proof. 

 

Based on Theorem (3.1) the measures of variation, skewness and kurtosis of the KQHR  

( , , , , , )a b     distribution can be obtained according to the following relation  

 

2

1

3

3 1 2 1

3
2 2

2 1

2 4

4 1 3 1 2 1

2
2

2 1

= 1,

( ) 3 ( ) ( ) 2 ( )
=

( ) ( )

( ) 4 ( ) ( ) 6 ( ) ( ) 3 ( )
and = .

( ) ( )

KQHR

KQHR

KQHR

CV

CS

CK





       

   

           

   



 

  

  

  

 

3.3   Moment Generating Function 

In this subsection we derived the moment generating function (mgf) of kumaraswamy 

quadratic hazard rate distribution.  

Theorem (3.2): If X  has the KQHR  ( , , , , , )a b     ,then the the moment generating 

function (mgf) of X   is given as follows 
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substituting (3.3) , (3.4)and (3.5) into relation (3.9) we get the following 
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Which completes the proof. 

4.   Order Statistics 

Moments of order statistics play an important role in quality control testing and 

reliability, where a practitioner needs to predict the failure of future items based on the 

times of a few early failures. These predictors are often based on moments of order 

statistics. We now derive an explicit expression for the density function of the thi  order 

statistic 
( : )i nX , say :: ( )i nf x , in a random sample of size n  from the KQHR  distribution. 

Let 1,X  2 ,...,X  nX  be a simple random sample from KQHR  ( ; , , , , )x a b    with 

cumulative distribution function and probability density function as in (2.1) and (2.2), 

respectively. Let 
(1: )nX    

(2: )nX   ...  
( : )n nX  denote the order statistics obtained from 

this sample. In reliability literature, 
( : )i nX  denote the lifetime of an ( 1)n i    out  of  

n  system which consists of n  independent and identically components. Then the pdf of 

( : )i nX  ,1 i n   is given by  

    
1

::

1
( ) = ( , ) 1 ( , ) ( , )

( , 1)

i n i

i nf x F x F x f x
i n i

 
   

 
  (4.1) 

where = ( , , , , )a b   . We defined the first order statistics 
(1) 1= ( ,X Min X  2 ,...,X  

)nX , the the last order statistics as 
( ) 1 2= ( , ,..., )n nX Max X X X  and median order 1mX  . 

 

The pdf of the thi  order statistic for Kumaraswamy quadratic hazard rate distribution is 

given by 
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Therefore, the pdf of the largest order statistic 
( )nX  is given by 
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and the pdf of the smallest order statistic 
(1)X  is given by 
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5.   Least Squares and Weighted Least Squares Estimators 

In this section we provide the regression based method estimators of the unknown 

parameters of the kumaraswamy quadratic hazard rate distribution, which was originally 

suggested by Swain, Venkatraman and Wilson (1988) to estimate the parameters of beta 

distributions. It can be used some other cases also. Suppose 1,..., nY Y  is a random sample 

of size n  from a distribution function (.)G  and suppose 
( )iY ; =1,2,...,i n  denotes the 

ordered sample. The proposed method uses the distribution of 
( )( )iG Y . For a sample of 

size n , we have 
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see Johnson, Kotz and Balakrishnan (1995). Using the expectations and the variances, 

two variants of the least squares methods can be used.  
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Method 1 (Least Squares Estimators) . Obtain the estimators by minimizing 
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with respect to the unknown parameters. Therefore in case of KQHR  distribution the 

least squares estimators of , , ,    a  and b  , say , ,LSE LSE LSE    , LSEa  and LSEb  

respectively, by using (2.1) and (5.1) we have the following equation  
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To minimize equation (5.2) with respect to  ,  , ,a   and b  and , we differentiate with 

respect to these parameters, which leads to the following equations. 
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The estimates of the parameters are obtained by equating the above equations to zero. 

Although the proposed estimators cannot be expressed in closed form, they can be 

obtained through the use of an appropriate numerical solution algorithm.  

Method 2 (Weighted Least Squares Estimators). The weighted least squares estimators 

can be obtained by minimizing 
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Therefore, in case of KQHR  distribution the weighted least squares estimators of ,  

,   , a  and b  , say , ,WLSE WLSE WLSE    , WLSEa  and WLSEb  respectively, can be obtained 

by minimizing 
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with respect to the unknown parameters only. 

6.   Maximum Likelihood Estimators 

In this section we consider the maximum likelihood estimators (MLE's) of KQHR  

distribution. Let = ( , , , , ) ,Ta b   in order to estimate the parameters , ,    ,a  and b  

of kumaraswamy quadratic hazard rate distribution, let 1,...,x  nx  be a random sample of 

size n  from KQHR  ( ; , , , , )x a b    then the log likelihood function can be written as 
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Differentiating L with respect to each parameter , ,    ,a  and b  and setting the result 

equals to zero, we obtain maximum likelihood estimates. The partial derivatives of L  

with respect to each parameter or the score function is given by 
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By solving this nonlinear system of equations (6.2) - (6.6), these solutions will yield the 

ML estimators for  ,  ,   , a  and b . For the five parameters kumaraswamy quadratic 

hazard rate distribution KQHR  ( , , , , , )a b x    pdf all the second order derivatives exist. 

Thus we have the inverse dispersion matrix is given by 
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By solving this inverse dispersion matrix these solutions will yield asymptotic variance 

and covariances of these ML estimators for  ,  ,   , a  and b . . Using (6.8), we 

approximate 100(1 )%  confidence intervals for , ,    ,a  and b  are determined 

respectively as  

 
2 2 2 2

, , andz V z V z V z V               

where z  is the upper 100 the  percentile of the standard normal distribution. 
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6.1   Application 

SPSS buit-in dataset “Breast Cancer Survival” is used to obtain fit The quadratic hazard 

rate distribution ( )QHR  distribution. The ML estimates of the parameters of The 

quadratic hazard rate distribution ( )QHR  distribution are given in the table 2. We have 

also given the AIC and negative of log likelihood function to decide about the suitability 

of the model. 

 

Variable 

Parameters (SE in Parenthesis) -2 Log (LF) AIC 

a b α β  θ 

Survival 

Time in 

years 

10347.77 

(302.69) 

8488.49 

(247.15) 

3.34 

(0.51) 

115.87 

(54.72) 

 47.75 

(12.33) 
-46988.97 -46978.97 
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